Activité motrice de myosines dans des réseaux de filaments d'actine d'architecture contrôlée in vitro
Myosin-based motility in actin filament networks of controlled architecture in vitro
par Richard Mathieu sous la direction de Martin Pascal
Thèse de doctorat en Biophysique
École doctorale Interdisciplinaire Européenne Frontières du Vivant

Soutenue le Friday 07 October 2016 à Sorbonne Paris Cité

Sujets
  • Actine
  • Cytosquelette
  • Microfilaments
  • Myosines

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr (Version intégrale de la thèse (pdf))
TEL (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Activité, Myosine, Moteur, Actine, Filament, Transport, Cargo, Positionnement, Architecture, In vitro
Resumé
Les moteurs moléculaires permettent le transport actif de molécules et d'organelles le long de filaments polaires du cytosquelette de la cellule eucaryote. Les filaments peuvent s'organiser en réseaux parallèles, antiparallèles, ou désordonnés. Malgré son importance, l'influence de l'architecture du cytosquelette sur le transport de cargos par des moteurs moléculaires est souvent ignorée. Dans ce travail de thèse, nous avons utilisé des patrons surfaciques de nucléation pour contrôler la géométrie de polymérisation de filaments d'actine. Cette approche permet de reproduire in vitro les trois types de réseaux qui sont observés in vivo. En adsorbant des moteurs moléculaires purifiés à la surface de nano-billes fluorescentes (diamètre 200 nm), nous avons étudié le transport de ces cargos dans des réseaux antiparallèles émergeant de deux lignes de nucléation parallèles. Nous avons observé que les billes recouvertes de moteurs processifs HMM-V (Heavy Mero-Myosine V) génèrent des mouvements dirigés en direction du milieu du réseau où la polarité moyenne des filaments est nulle et où les billes s'accumulent. De plus, la distribution de positions des billes à l'état stationnaire peut être déduite des profils de vitesse et de diffu-sion des billes, indiquant que le transport actif suit un processus de convection-diffusion. Les billes recouvertes de moteurs non-processifs HMM-II (Heavy Mero-Myosine II) dé-montrent des comportements similaires. Cependant, bien que le gradient de vitesse des billes HMM-II soit plus important que pour les billes HMM-V au centre du réseau, le coeffi-cient de diffusion l'est bien davantage. Le centrage de ces billes est ainsi moins précis qu'avec la HMM V. A notre surprise, nous avons observé que la précision du centrage ne dépend pas de l'espacement entre les deux lignes de nucléation, donc de la taille du sys-tème. Le comportement des billes est décrit par un modèle à trois états dans lequel la bille sonde localement la polarité nette du réseau en se détachant et en se rattachant fré-quemment aux filaments. Une séquence stochastique de déplacements dirigés dans un état attaché aux filaments et d'explorations diffusives dans un état détaché, conduit à une marche aléatoire biaisée avec un coefficient de diffusion et une vitesse effectifs. Notre description physique indique que la précision du positionnement des billes dépend du gra-dient de polarité nette du réseau de filaments ainsi que de la distance moyenne de par-cours des billes dans l'état attaché à l'actine. Nos résultats démontrent ainsi le rôle clef que joue l'architecture du réseau de filaments sur les propriétés du transport. Dans la cellule, les moteurs moléculaires permettent également la réorganisation des filaments du cytosquelette. En ajoutant nos moteurs moléculaires en solution, nous avons observé qu'un réseau de filaments d'actine parallèles, polymérisés in vitro à partir d'une ligne ou d'un disque de nucléation, peut former spontanément des faisceaux oscil-lants. Ces oscillations ressemblent aux battements du flagelle du spermatozoïde. En parti-culier, le système génère des ondes de déformation transverses se propageant de la base à l'apex du faisceau oscillant à une vitesse de 0,5 µm/s. Au cours du temps, les faisceaux d'actine s'épaississent, ce qui conduit à un ralentissement de l'oscillation avec une période qui croît de 25 s à 40 s. De plus, nous avons observé que des faisceaux d'actine voisins sont capables de se synchroniser, comme c'est le cas entre les deux flagelles de l'algue Chlamydomonas. Notre système acto-myosine minimal permet donc d'imiter le battement de flagelles, bien que la nature des moteurs moléculaires et des filaments en jeu soit com-plètement différente. Ainsi, ce système fournit un nouvel outil pour étudier les propriétés physiques génériques du battement flagellaire.