Functional investigation of the efflux pump MexA-MexB-OprM of Pseudomonas aeruginosa
Etude fonctionnelle de la pompe d'efflux MexA-MexB-OprM de Pseudomonas aeruginosa
par Verchère Alice sous la direction de Broutin Isabelle et de Picard Martin
Thèse de doctorat en Biochimie et biologie moléculaire
École doctorale Médicament, Toxicologie, Chimie, Imageries

Soutenue le Thursday 27 November 2014 à Université Paris Descartes ( Paris 5 )

Sujets
  • Exploration fonctionnelle
  • Liposomes
  • Protéines membranaires
  • Pseudomonas aeruginosa
  • Résistance aux antibiotiques
  • Transport biologique actif

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr (Version intégrale de la thèse (pdf))
TEL (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Resistance aux antibiotiques, Pompe d'efflux, Protéine membranaire, Protéoliposome, Test fonctionnel
Resumé
L'efflux actif, qui permet aux bactéries d'exporter les antibiotiques vers le milieu extérieur est l'un des mécanismes majeurs de résistance aux antibiotiques. L'une des pompes d'efflux de Pseudomonas aeruginosa, MexA-MexB-OprM, est constituée de trois protéines : i) MexA, une protéine membranaire de fusion qui se trouve dans le périplasme ; ii) MexB qui se trouve dans la membrane interne et qui reconnaît l'antibiotique et initie son transport grâce à la force protomotrice et iii) OprM un canal qui se trouve dans la membrane externe. Durant ma thèse, j'ai mis au point un test fonctionnel pour MexA et MexB. Ce test est basé sur la coreconstitution de ces protéines avec la bactériorhodopsine, une protéine membranaire qui génère un gradient de proton après activation par la lumière. L'activité de MexB est suivie de manière indirecte via la mesure du pH. En mesurant le pH à l'intérieur des liposomes, on peut connaître l'activité de MexB puisque ce dernier utilise la force protomotrice pour transporter ses substrats. Une mesure fiable du pH peut être obtenue grâce à la pyranine dont la fluorescence varie avec le pH. Grâce à ce test, j'ai prouvé que MexB possède une activité basale qui ne dépend pas de la présence de substrat et que l'activité de MexB devient optimale quand cette dernière est reconstituée en présence de MexA. Dans un deuxième temps, j'ai mis au point un test fonctionnel pour la pompe d'efflux entière. Pour cela, je prépare deux types distincts de protéoliposomes. Dans le premier type de liposome, j'encapsule de la pyranine, (pour suivre l'activité de MexB) et un substrat de MexB qui est un agent intercalant de l'ARN. Ce substrat est faiblement fluorescent dans un environnement aqueux et fortement fluorescent lorsqu'il est intercalé dans l'ARN. MexB et MexA sont reconstitués dans ces liposomes. Dans le deuxième type de liposomes, je reconstitue OprM et j'encapsule de l'ARN. Ces deux types de liposomes sont alors mélangés. Lorsque la pompe s'assemble et qu'il y a un transport actif à travers cette dernière, deux phénomènes sont observés: la diminution de la fluorescence de la pyranine (car MexB fait entrer des protons dans le premier type de liposome pour transporter le substrat) et l'augmentation de la fluorescence du substrat car ce dernier s'intercale dans l'ARN se trouvant dans le deuxième type de liposome. En mélangeant les deux types de liposomes, j'obtiens une preuve de la reconstitution in vitro de la pompe entière et j'ai mis en évidence qu'OprM s'ouvre en présence de MexA et MexB et que sa présence augmente l'activité de MexB.