Modèles statistiques pour l'extrapolation de l'information adulte à l'enfant dans les essais cliniques
Statistical models for extrapolation of adult to child information in clinical trials
par Caroline PETIT sous la direction de Sarah ZOHAR et de Adeline LECLERCQ-SAMSON
Thèse de doctorat en Biostatistique
ED 393 École doctorale Pierre Louis de santé publique : épidémiologie et sciences de l'information biomédicale

Soutenue le jeudi 09 mars 2017 à Sorbonne Paris Cité

Sujets
  • Études cliniques
  • Méthodes statistiques
  • Pédiatrie

Les thèses de doctorat soutenues à Université de Paris sont déposées au format électronique

Consultation de la thèse sur d’autres sites :

TEL (Version intégrale de la thèse (pdf))
Theses.fr (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Pédiatrie, Extrapolation, Recherche de dose, Modélisation pharma- cocinétique, Phase I-II, Modèle non-linéaire mixtes, Inférence bayésienne
Resumé
Cette thèse est consacrée aux méthodes statistiques d'extrapolation dans les essais de recherche de dose en pédiatrie. Dans un premier temps, nous réalisons une revue systématique de la littérature sur le sujet. Elle met en évidence la nécessité de proposer de nouvelles méthodes pour la conception des études d'escalade de dose chez l'enfant. Nous apportons des réponses à cette problématique en exploitant l'information disponible chez l'adulte. Dans une première série de travaux, nous étudions l'intérêt de la prédiction des paramètres pharmacocinétiques (PK) en pédiatrie à l'aide de méthodes d'extrapolation : l'allométrie et la maturation. Cette évaluation est réalisée à partir de données PK chez l'adulte et l'enfant pour la méfloquine. Faisant appel aux paramètres prédits, nous développons une approche pour choisir les temps de prélèvements (design) d'une étude PK. Nous recommandons un design obtenu par optimisation grâce à la méthode de D-optimalité en utilisant le logiciel PFIM. Ce design est ensuite validé à l'aide de simulations sur différents modèles. Une seconde série de travaux nous amène à proposer des recommandations pour la planification d'un essai de recherche de dose. Nous avanc¿ons d'abord des techniques pour choisir les doses à tester grâce à l'utilisation des données adultes et de l'extrapolation. Nous proposons ensuite une méthode proche de la méta-analyse pour prédire les probabilités de toxicités pour chaque dose. Enfin, nous employons la méthode de l'Effective sample size afin de construire une loi a priori lors de l'utilisation d'une estimation bayésienne. Nous validons ces recommandations sur une étude de cas en utilisant une méthode d'escalade de dose, la méthode de réévaluation séquentielle bivariée, pour laquelle nous évaluons à la fois la toxicité et l'efficacité. A partir de l'exemple de la molécule erlotinib, nous effectuons une série de simulations sur plusieurs scénarios afin d'illustrer les performances de la planification.