Le statisticien neuronal : comment la perspective bayésienne peut enrichir les neurosciences
The neuronal statistician : how the Bayesian perspective can enrich neuroscience
par Dehaene Guillaume sous la direction de Mamassian Pascal et de Pouget Alexandre
Thèse de doctorat en Psychologie
École doctorale Cognition, Comportements, Conduites Humaines

Soutenue le Friday 09 September 2016 à Sorbonne Paris Cité , Université de Genève

Sujets
  • Aspect psychologique
  • Réseaux neuronaux (informatique)
  • Statistique bayésienne
Le texte intégral n’est pas librement disponible sur le web
Vous pouvez accéder au texte intégral de la thèse en vous authentifiant à l’aide des identifiants ENT de l’Université, au sein de l’établissement en utilisant un compte invité Wifi ou en demandant un accès extérieur si vous pouvez justifier de votre appartenance à un établissement chargé d’une mission d’enseignement supérieur ou de recherche

Se connecter ou demander un accès au texte intégral

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr

Description en anglais
Description en français
Mots clés
Neurosciences computationelles, Statistiques bayésiennes, Codage efficace, Information de Fisher, Inférence approximée, Expectation propagation
Resumé
L'inférence bayésienne répond aux questions clés de la perception, comme par exemple : "Que faut-il que je crois étant donné ce que j'ai perçu ?". Elle est donc par conséquent une riche source de modèles pour les sciences cognitives et les neurosciences (Knill et Richards, 1996). Cette thèse de doctorat explore deux modèles bayésiens. Dans le premier, nous explorons un problème de codage efficace, et répondons à la question de comment représenter au mieux une information probabiliste dans des neurones pas parfaitement fiables. Nous innovons par rapport à l'état de l'art en modélisant une information d'entrée finie dans notre modèle. Nous explorons ensuite un nouveau modèle d'observateur optimal pour la localisation d'une source sonore grâce à l'écart temporel interaural, alors que les modèles actuels sont purement phénoménologiques. Enfin, nous explorons les propriétés de l'algorithme d'inférence approximée "Expectation Propagation", qui est très prometteur à la fois pour des applications en apprentissage automatique et pour la modélisation de populations neuronales, mais qui est aussi actuellement très mal compris.