Modèles descriptifs de relations spatiales pour l'aide au diagnostic d'images biomédicales
Descriptive models based on spatial relations for biomedical image diagnosis
par Garnier Mickaël sous la direction de Wendling Laurent
Thèse de doctorat en Informatique
École doctorale Informatique, Télécommunications et Electronique

Soutenue le Monday 24 November 2014 à Université Paris Descartes ( Paris 5 )

Sujets
  • Cancer -- Diagnostic
  • Diagnostic
  • Dégénérescence maculaire liée à l'âge
  • Imagerie médicale
  • Imagerie pour le diagnostic

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Pathologie numérique, Relations spatiales, Description de formes, Analyse de texture, Reconnaissance d'objets, Aide au diagnostic, Sévérité des cancers, Dégénérescence maculaire liée à l'âge
Resumé
La pathologie numérique s'est développée ces dernières années grâce à l'avancée récente des algorithmes d'analyse d'images et de la puissance de calcul. Notamment, elle se base de plus en plus sur les images histologiques. Ce format de données a la particularité de révéler les objets biologiques recherchés par les experts en utilisant des marqueurs spécifiques tout en conservant la plus intacte possible l'architecture du tissu. De nombreuses méthodes d'aide au diagnostic à partir de ces images se sont récemment développées afin de guider les pathologistes avec des mesures quantitatives dans l'établissement d'un diagnostic. Les travaux présentés dans cette thèse visent à adresser les défis liés à l'analyse d'images histologiques, et à développer un modèle d'aide au diagnostic se basant principalement sur les relations spatiales, une information que les méthodes existantes n'exploitent que rarement. Une technique d'analyse de la texture à plusieurs échelles est tout d'abord proposée afin de détecter la présence de tissu malades dans les images. Un descripteur d'objets, baptisé Force Histogram Decomposition (FHD), est ensuite introduit dans le but d'extraire les formes et l'organisation spatiale des régions définissant un objet. Finalement, les images histologiques sont décrites par les FHD mesurées à partir de leurs différents types de tissus et des objets biologiques marqués qu'ils contiennent. Les expérimentations intermédiaires ont montré que les FHD parviennent à correctement reconnaitre des objets sur fonds uniformes y compris dans les cas où les relations spatiales ne contiennent à priori pas d'informations pertinentes. De même, la méthode d'analyse de la texture s'avère satisfaisante dans deux types d'applications médicales différents, les images histologiques et celles de fond d'œil, et ses performances sont mises en évidence au travers d'une comparaison avec les méthodes similaires classiquement utilisées pour l'aide au diagnostic. Enfin, la méthode dans son ensemble a été appliquée à l'aide au diagnostic pour établir la sévérité d'un cancer via deux ensembles d'images histologiques, un de foies métastasés de souris dans le contexte du projet ANR SPIRIT, et l'autre de seins humains dans le cadre du challenge CPR 2014 : Nuclear Atypia. L'analyse des relations spatiales et des formes à deux échelles parvient à correctement reconnaitre les grades du cancer métastasé dans 87, 0 % des cas et fourni des indications quant au degré d'atypie nucléaire. Ce qui prouve de fait l'efficacité de la méthode et l'intérêt d'encoder l'organisation spatiale dans ce type d'images particulier.