Distributed edge computing for enhanced IoT devices and new generation network efficiency
Edge computing distribuée pour des appareils IoT dans les réseaux de nouvelle génération
par Mohammed LAROUI sous la direction de Hassine MOUNGLA et de Zohra SLAMA
Thèse de doctorat en Informatique. Réseaux
ED 130 Informatique, Télécommunications et Electronique


Sujets
  • Informatique dans les nuages
  • Intelligence artificielle
  • Internet des objets

Les thèses de doctorat soutenues à Université Paris Cité sont déposées au format électronique

Consultation de la thèse sur d’autres sites :

TEL (Version intégrale de la thèse (pdf))
Theses.fr (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Internet des objets (IoT), Cloud Computing, Edge/Fog Computing, Mobile Edge Computing, Intelligence Artificielle, Optimisation
Resumé
Dans le cloud computing, les services et les ressources sont centralisés dans des centres de données auxquels l'utilisateur peut accéder à partir de ses appareils connectés. L'infrastructure cloud traditionnelle sera confrontée à une série de défis en raison de la centralisation de calcul, du stockage et de la mise en réseau dans un petit nombre de centres de données, et de la longue distance entre les appareils connectés et les centres de données distants. Pour répondre à ce besoin, l'edge computing s'appuie sur un modèle dans lequel les ressources de calcul sont distribuées dans le edge de réseau selon les besoins, tout en décentralisant le traitement des données du cloud vers le edge autant que possible. Ainsi, il est possible d'avoir rapidement des informations exploitables basées sur des données qui varient dans le temps. Dans cette thèse, nous proposons de nouveaux modèles d'optimisation pour optimiser l'utilisation des ressources dans le edge de réseau pour deux domaines de recherche de l'edge computing, le "service offloading" et "vehicular edge computing". Nous étudions différents cas d'utilisation dans chaque domaine de recherche. Pour les solutions optimales, Premièrement, pour le "service offloading", nous proposons des algorithmes optimaux pour le placement des services dans les serveurs edge (Tasks, Virtual Network Functions (VNF), Service Function Chain (SFC)) en tenant compte des contraintes de ressources de calcul. De plus, pour "vehicular edge computing", nous proposons des modèles exacts liés à la maximisation de la couverture des véhicules par les taxis et les Unmanned Aerial Vehicle (UAV) pour les applications de streaming vidéo en ligne. De plus, nous proposons un edge- autopilot VNFs offloading dans le edge de réseau pour la conduite autonome. Les résultats de l'évaluation montrent l'efficacité des algorithmes proposés dans les réseaux avec un nombre limité d'appareils en termes de temps, de coût et d'utilisation des ressources. Pour faire face aux réseaux denses avec un nombre élevé d'appareils et des problèmes d'évolutivité, nous proposons des algorithmes à grande échelle qui prennent en charge une énorme quantité d'appareils, de données et de demandes d'utilisateurs. Des algorithmes heuristiques sont proposés pour l'orchestration SFC, couverture maximale des serveurs edge mobiles (véhicules). De plus, les algorithmes d'intelligence artificielle (apprentissage automatique, apprentissage en profondeur et apprentissage par renforcement en profondeur) sont utilisés pour le placement des "5G VNF slices", le placement des "VNF-autopilot" et la navigation autonome des drones. Les résultats numériques donnent de bons résultats par rapport aux algorithmes exacts avec haute efficacité en temps.