Mots clés |
Fouille de textes, Classification croisée, Similarité sémantique, Système de recommandation, Plongements de mots, Plongements de documents, Apprentissage non supervisé |
Resumé |
Les données textuelles constituent un vivier d'information exploitable pour de nombreuses entreprises. En particulier, le web fournit une source quasiment inépuisable de données textuelles qui peuvent être utilisées à profit pour des systèmes de recommandation, de veille, de recherche d'information, etc. Les récentes avancées en traitement du langage naturel ont permit de capturer le sens des mots dans leur contexte afin d'améliorer les systèmes de traduction, de résumés, ou encore le regroupement de documents suivant des catégories prédéfinies. La majorité de ces applications reposent cependant souvent sur une intervention humaine non négligeable pour annoter des corpus : Elle consiste, par exemple, à fournir aux algorithmes des exemples d'affectation de catégories à des documents. L'algorithme apprend donc à reproduire le jugement humain et l'applique pour de nouveaux documents. L'objet de cette thèse est de tirer profit des dernières avancées qui capturent l'information sémantique du texte pour l'appliquer dans un cadre non supervisé. Les contributions s'articulent autour de trois axes principaux. Dans le premier, nous proposons une méthode pour transférer l'information capturée par un réseau neuronal pour de la classification croisée textuelle. Elle consiste à former simultanément des groupes de documents similaires et des groupes de mots cohérents. Ceci facilite l'interprétation d'un grand corpus puisqu'on peut caractériser des groupes de documents par des groupes de mots, résumant ainsi une grande volumétrie de texte. Plus précisément nous entraînons l'algorithme Paragraph Vectors sur un jeu de données augmenté en faisant varier les différents hyperparamètres, classifions les documents à partir des différentes représentations vectorielles obtenues et cherchons un consensus sur des différentes partitions. Une classification croisée contrainte de la matrice de co-occurrences termes-documents est ensuite appliquée pour conserver le partitionnement consensus obtenu. Cette méthode se révèle significativement meilleure en qualité de partitionnement des documents sur des corpus variés et a l'avantage de l'interprétation offerte par la classification croisée. Deuxièmement, nous présentons une méthode pour évaluer des algorithmes de classification croisée en exploitant des représentation vectorielles de mots appelées word embeddings. Il s'agit de vecteurs construits grâce à de gros volumes de textes, dont une caractéristique majeure est que deux mots sémantiquement proches ont des word embeddings proches selon une distance cosinus. Notre méthode permet de mesurer l'adéquation entre les partitions de documents et de mots, offrant ainsi de manière totalement non supervisée un indice de la qualité de la classification croisée. Troisièmement, nous proposons un système qui permet de recommander des petites annonces similaires lorsqu'on en consulte une. Leurs descriptions sont souvent courtes, syntaxiquement incorrectes, et l'utilisation de synonymes font qu'il est difficile pour des systèmes traditionnels de mesurer fidèlement la similarité sémantique. De plus, le fort renouvellement des annonces encore valides (produit non vendu) implique des choix permettant d'avoir un faible temps de calcul. Notre méthode, simple à implémenter, répond à ce cas d'usage et s'appuie de nouveau sur les word embeddings. L'utilisation de ceux-ci présente certains avantages mais impliquent également quelques difficultés : la création de tels vecteurs nécessite de choisir les valeurs de certains paramètres, et la différence entre le corpus sur lequel les word embeddings ont été construit et celui sur lequel ils sont utilisés fait émerger le problème des mots qui n'ont pas de représentation vectorielle. Nous présentons, pour palier ces problèmes, une analyse de l'impact des différents paramètres sur les word embeddings ainsi qu'une étude des méthodes permettant de traiter le problème de « mots en dehors du vocabulaire ». |