Network mechanisms of working memory : from persistent dynamics to chaos
Mécanismes de réseau de mémoire de travail : de dynamique persistante à chaos
par Harish Omri sous la direction de Hansel David
Thèse de doctorat en Neurosciences
École doctorale Cerveau, Cognition, Comportement

Soutenue le Tuesday 10 December 2013 à Université Paris Descartes ( Paris 5 )

Sujets
  • Autocorrélation (statistique)
  • Mémoire de travail
  • Réseaux neuronaux (physiologie)
  • Théorie du champ moyen

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Mémoire de travail, Réseaux neuronaux, Chaos, Dynamique d'attracteur, Théorie de moyen champ, Balanced networks, Motifs de connectivité
Resumé
Une des capacités cérébrales les plus fondamentales, qui est essentiel pour tous les fonctions cognitifs de haut niveau, est de garder des informations pertinentes de tâche pendant les périodes courtes de temps; on connaît cette capacité comme la mémoire de travail (WM). Dans des décennies récentes, accumule là l'évidence d'activité pertinente de tâche dans le cortex préfrontal (PFC) de primates pendant les périodes de "delay" de tâches de "delay-response", impliquant ainsi que PFC peut maintenir des informations sensorielles et ainsi la fonction comme un module de WM. Pour la récupération d'informationssensorielles de l'activité de réseau après que le stimulus sensoriel n'est plus présent il est impératif que l'état du réseau au moment de la récupération soit corrélé avec son état au moment de la compensation de stimulus. Un extrême, en vue dans les modèles informatiques de WM, est la coexistence d'attracteurs multiples. Dans cette approche la dynamique de réseau a une multitude d'états stables possibles, qui correspondent aux états différents de mémoire et un stimulus peut forcer le réseau à changer à un tel état stable. Autrement, même en absence d'attracteurs multiples, si la dynamique du réseau estchaotique alors les informations sur des événements passés peuvent être extraites de l'état du réseau, à condition que la durée typique de l'autocorrélation (AC) de dynamique neuronale soit assez grande. Dans la première partie de cette thèse, j'étudie un modèle à base d'attracteur de mémoire d'un emplacement spatial, pour examiner le rôle des non-linéarités de courbes de f-I neuronales dans des mécanismes de WM. Je fournis une théorie analytique et des résultats de simulations montrant que ces nonlinéarités, plutôt que les constants de temps synaptic ou neuronal, peuvent être la base de mécanismes de réseau WM. Dans la deuxième partie j'explore des facteurs contrôlant la durée d'ACs neuronales dans ungrand réseau "balanced" affichant la dynamique chaotique. Je développe une théorie de moyen champ (MF) décrivant l'ACs en termes de plusieurs paramètres d'ordre. Alors, je montre qu'en dehors de la proximité au point de transition-à-chaos, qui peut augmenter la largeur de la courbe d'AC, l'existence de motifs de connectivité peut causer des corrélations de longue durée dans l'état du réseau.