Functional maturation of postnatal hippocampus in rodents : electrophysiological approach
La maturation fonctionnelle de l'hippocampe postnatal chez le rongeur : approche électrophysiologique
par Janác¿ková (Janackova) Son¿a sous la direction de Khazipov Rustem et de Nabbout Rima
Thèse de doctorat en Neurosciences
École doctorale Cerveau, Cognition, Comportement

Soutenue le Monday 25 November 2013 à Université Paris Descartes ( Paris 5 )

Sujets
  • Hippocampe (anatomie)
  • Rats
  • Réseaux neuronaux (physiologie)
  • Électrophysiologie
Le texte intégral n’est pas librement disponible sur le web
Vous pouvez accéder au texte intégral de la thèse en vous authentifiant à l’aide des identifiants ENT de l’Université, au sein de l’établissement en utilisant un compte invité Wifi ou en demandant un accès extérieur si vous pouvez justifier de votre appartenance à un établissement chargé d’une mission d’enseignement supérieur ou de recherche

Se connecter ou demander un accès au texte intégral

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr

Description en anglais
Description en français
Mots clés
Hippocampe, Rat, Cortex entorhinal, Développement, Sharp waves, GDPs
Resumé
Les réseaux neuronaux, pendant leur période de développement, génèrent des patrons d'activité immatures qui sont supposés participer à la formation des circuits neuronaux. Ces activités synchronisées créent des conditions favorables pour la plasticité hebbienne qui soutient la formation des circuits locaux. Les travaux menés notamment sur les systèmes sensoriels ont montré que les circuits pauci-neuronaux locaux sont capables de présenter une activité synchrone tout en étant isolés du reste des structures cérébrales. La moelle épinière isolée produit des bursts qui sont à l'origine des secousses musculaires, la rétine insensible à la lumière génère des ondes d'activité, d'autres régions cérébrales génèrent des activités synchrones avant de remplir la fonction à laquelle ils sont destinés. De manière similaire, l'hippocampe du rat nouveau-né ou primate prématuré in vitro, ainsi que les néocortex immature in vitro, génèrent une activité neuronale synchronisée, appelée giant depolarising potentials (GDPs). En se basant uniquement sur ces études et en prenant en compte la maturation tardive de certaines projections neuronales à distance, il serait tentant de conclure que le cerveau immature fonctionne comme un ensemble de petits modules fonctionnels qui auto-entretiennent leur activité intrinsèque avant de se connecter entre eux pour créer un cerveau fonctionnel adulte. Cependant, certaines connexions à longue distance sont formées très tôt pendant le développement et permettent la propagation des oscillations immatures entre les structures connectées. En effet, les ondes rétinales se propagent au noyau géniculé latéral et ensuite jusqu'au cortex visuel ; les GDPs hippocampiques se propagent à l'hippocampe controlatéral, septum et cortex entorhinal et finalement, les secousses musculaires, en créant un feed-back sensoriel, déclenchent des oscillations gamma immatures ainsi que les spindle bursts dans le réseau thalamo-cortical. Un fonctionnement similaire est décrit chez le nouveau-né prématuré. Il paraît donc plus probable, que le cerveau soit, dès les stades précoces du développement, organisé en sous-systèmes fonctionnels reliés entre eux anatomiquement et fonctionnellement. Au sein des unités fonctionnelles sont générés des patrons d'activité immatures synchrones afin de créer des connexions organisées topographiquement qui serviront de base anatomique de la fonction finale. Si ces étapes développementales sont perturbées pendant les périodes critiques, le système ne pourra pas assurer sa fonction de manière adéquate au stade mature. L'hippocampe mature, ou plus exactement les circuits cortico-hippocampiques, jouant un rôle primordial dans la mémoire déclarative, l'orientation spatiale et l'inhibition du comportement. L'établissement de ces fonctions est progressif au cours du développement. Par exemple les adultes humains n'ont que rarement des souvenirs personnels datant avant l'âge de trois ans. Or, nous savons aujourd'hui que le bébé humain est capable de garder des souvenirs dans la mémoire déclarative (dépendante de l'hippocampe) au cours de la première année de vie avec une efficacité croissante, mais il ne se rappellera pas ces souvenirs à l'âge adulte (Bauer, 2006). Nous ne savons pas s'il s'agit d'un encodage différent d'emblée ou d'un processus secondaire supprimant l'accès à ces souvenirs précoces. Nous pouvons présumer qu'il existe des modifications des activités électrophysiologiques pendant le développement qui soutiennent la modification de ces fonctions. Au cours de ce travail de thèse, nous voulions savoir comment et à partir de quand l'hippocampe, qui reçoit des informations convergentes de nombreuses régions néocorticales, acquiert son mode de fonctionnement adulte. Afin de répondre à cette question nous avons étudié le système cortex entorhinal - hippocampe, le cortex entorhinal étant la principale entrée excitatrice de l'hippocampe et recevant des afférences de nombreuses régions du néocortex. (...)