Rôle d'ADAMTSL2 et FBN1 dans l'ossification endochondrale : étude des modèles murins mimant la dysplasie géléophysique
Role of ADAMTSL2 and FBN1 in endochondral ossification : study of murine models miming geleophysic dysplasia
par Laure DELHON sous la direction de Carine LE GOFF
Thèse de doctorat en Génétique
ED 562 Bio Sorbonne Paris Cité

Soutenue le mardi 28 novembre 2017 à Sorbonne Paris Cité

Sujets
  • Aspect génétique
  • Dysplasie géléophysique
  • Matrice extracellulaire
  • Os -- Maladies

Les thèses de doctorat soutenues à Université Paris Cité sont déposées au format électronique

Consultation de la thèse sur d’autres sites :

TEL (Version intégrale de la thèse (pdf))
Theses.fr (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Matrice extracellulaire, Ossification endochondrale, Plaque de croissance, Fibrilline, ADAMTSL, Modèle murin
Resumé
La dysplasie géléophysique (DG) est une maladie rare qui appartient à la famille des dysplasies acroméliques. Cette pathologie est caractérisée par un retard statural, une brachydactylie, une raideur articulaire, une dysmorphie faciale, une peau épaisse, une atteinte bronchopulmonaire et une surcharge valvulaire cardiaque conduisant le plus souvent à une mort précoce dans les premières années de la vie. Deux modes de transmissions ont été identifiés. Le premier autosomique récessif est dû à des mutations dans le gène ADAMTSL2. Le second, autosomique dominant est dû à un hot-spot de mutations dans les exons 41 et 42 qui codent pour le domaine Transforming Growth Factor (TGF) β-binding protein-like domain 5 (TB5) du gène FBN1. FBN1 et ADAMTSL2 codent pour des protéines sécrétées de la matrice extracellulaire (MEC). FBN1 code pour la fibrilline-1, une composante des microfibrilles qui jouent un rôle dans la biodisponibilité du TGFβ. La protéine ADAMTSL2 fait partie de la famille des ADAMTS mais n'a pas d'activité enzymatique dû à l'absence de domaine catalytique. Sa fonction est encore inconnue. Cependant des partenaires d'ADAMTSL2 ont été identifiés par notre équipe : latent-transforming growth factor beta-binding protein 1 (LTBP1) et FBN1 qui sont directement impliqués dans le stockage de TGFβ. Récemment une autre protéine, FBN2, a aussi été découverte comme partenaire d'ADAMTSL2 (Hubmacher D et. al.). L'objectif de ma thèse était de comprendre le mécanisme physiopathologique de la DG, grâce à l'analyse de modèles murins. Un premier modèle murin pour la forme récessive de la DG appelé CreCMV; Adamtsl2f/f (ou KO) a été généré. L'analyse phénotypique de ces souris a montré un retard statural, des os longs courts, des extrémités courtes. Dans les plaques de croissance des os longs des souris mutantes, nous avons observé une désorganisation des colonnes chondrocytaires associée à une diminution de l'expression du collagène de type 10, marqueur de la différentiation des chondrocytes. L'analyse de la matrice extracellulaire des plaques de croissance a révélé une désorganisation structurale importante. Une diminution de la fibrilline-1 et de LTBP-1 a été observée ainsi qu'une augmentation de l'activation de la voie de signalisation TGFβ au niveau de la plaque de croissance des souris mutantes. Nous avons observé une désorganisation du réseau microfibrillaire sur des cultures de chondrocytes de souris mutantes. Ces résultats nous ont permis de suggérer que la protéine ADAMTSL2 est impliquée dans la structure du réseau microfibrillaire, lieu de stockage du TGFβ et de démontrer un rôle majeur d'ADAMTSL2 dans la régulation de la chondrogenèse. Afin d'étudier la forme dominante de la DG, le modèle FBN1TB5+/- a été généré. Il est issu d'un système knock-in avec une mutation dans l'exon 42 du gène fbn1 qui correspond au domaine TB5 de la fibrilline-1. Nos résultats ont montré une réduction de la taille des souris hétérozygotes et homozygotes en comparaison aux souris sauvages au stade P1 et P30. Au stade P1, nous avons observé des chondrocytes plus larges et une dérégulation des marqueurs de la chondrogenèse au niveau de la plaque de croissance des fémurs des souris hétérozygotes, ainsi que chez les souris homozygotes. De plus, nous avons observé une très forte mortalité des souris homozygotes vers l'âge de 2 ou 3 mois. Nous en avons conclu que des mutations domaine TB5 de la fibrilline étaient liées à un retard statural et donc que FBN1 avait un rôle majeur dans la chondrogenèse.