Mechanisms of brain dysfunction in myotonic dystrophy type 1 : impact of the CTG expansion on neuronal and astroglial physiology
Mécanismes du dysfonctionnement cérébral dans la dystrophie myotonique de type 1 : impacte des expansions CTG sur la physiologie neuronale et astrogliale
par Diana Mihaela DINCÃ sous la direction de Mário GOMES-PEREIRA
Thèse de doctorat en Génétique
ED 562 Bio Sorbonne Paris Cité

Soutenue le mardi 31 octobre 2017 à Sorbonne Paris Cité

Sujets
  • Myotonie atrophique
  • Système nerveux central -- Maladies
Le texte intégral n’est pas librement disponible sur le web
Vous pouvez accéder au texte intégral de la thèse en vous authentifiant à l’aide des identifiants ENT d’Université Paris Cité, si vous en êtes membre, ou en demandant un accès extérieur, si vous pouvez justifier de de votre appartenance à un établissement français chargé d’une mission d’enseignement supérieur ou de recherche

Se connecter ou demander un accès au texte intégral

Les thèses de doctorat soutenues à Université Paris Cité sont déposées au format électronique

Consultation de la thèse sur d’autres sites :

TEL (Version partielle de la thèse pour sa diffusion sur Internet (pdf))
Theses.fr (Version partielle de la thèse pour sa diffusion sur Internet (pdf))

Description en anglais
Description en français
Mots clés
Dystrophie myotonique de type 1, Système nerveux central, Modèle murin transgénique, Neurones, Astrocytes, Interaction neurogliale, Transporteur de glutamate, Protéines synaptiques
Resumé
La dystrophie myotonique de type 1 (DM1), ou maladie de Steinert, est une maladie qui touche plusieurs tissus, dont le système nerveux central (SNC). L'atteinte neurologique est variable et inclut des troubles de la fonction exécutive, des changements de comportement et une hypersomnolence dans la forme adulte, ainsi qu'une déficience intellectuelle marquée dans la forme congénitale. Dans leur ensemble, les symptômes neurologiques ont un fort impact sur le parcours académique, professionnel et les interactions sociales. Aujourd'hui aucune thérapie n'existe pour cette maladie. La DM1 est due à une expansion anormale d'un triplet CTG non-codant dans le gène DMPK. Les ARN messagers DMPK, porteurs de l'expansion, s'accumulent dans le noyau des cellules (sous forme de foci) et perturbent la localisation et la fonction de protéines de liaison à l'ARN, notamment des familles MBNL et CELF, ce qui entraîne des défauts d'épissage alternatif, d'expression, de polyadenylation et de localisation d'autres ARN cibles. Malgré le progrès récent dans la compréhension des mécanismes de la maladie, les aspects cellulaires et moléculaires de l'atteinte neurologique restent méconnus: nous ne connaissons ni la contribution de chaque type cellulaire du cerveau, ni les voies moléculaires spécifiquement dérégulées dans chaque type cellulaire. L'objectif de ma thèse a été de répondre à ces deux questions importantes en utilisant un modèle de souris transgéniques et des cellules primaires dérivées de celui-ci. Pour mon projet, j'ai utilisé les souris DMSXL générées par mon laboratoire. Ces souris reproduisent des caractéristiques importantes de la DM1, notamment l'accumulation des ARN toxiques et la dérégulation de l'épissage alternatif dans plusieurs tissus. L'impacte fonctionnel des transcrits DMPK toxiques dans le SNC des souris DMSXL se traduit par des problèmes comportementaux et cognitifs et par des défauts de la plasticité synaptique. Afin d'identifier les mécanismes moléculaires associés à ces anomalies, une étude protéomique globale a montré une dérégulation de protéines neuronales et astrocytaires dans le cerveau des souris DMSXL. De plus, l'étude de la distribution des foci d'ARN dans les cerveaux des souris et des patients a montré un contenu plus élevé dans les astrocytes par rapport aux neurones. Ensemble, ces résultats suggèrent une contribution à la fois neuronale et gliale dans la neuropathogenèse de la DM1. L'étude protéomique globale des cerveaux des souris DMSXL, a aussi montré des défauts de protéines synaptiques spécifiques des neurones, que nous avons par la suite validés dans le cerveau des patients. SYN1 est hyperphosphorylée d'une façon CELF-dépendante et RAB3A est surexprimé en réponse à l'inactivation de MBNL1. Les protéines MBNL et CELF régulent l'épissage alternatif d'un groupe de transcrits au cours du développement, et leur dérégulation dans la DM1 entraîne l'expression anormale d'isoformes d'épissage embryonnaires dans le tissu adulte. Dans ce contexte, j'ai étudié si les défauts des protéines RAB3A et SYN1 sont associés à une dérégulation d'épissage, et si les anomalies des protéines synaptiques identifiées dans la DM1 reproduisent des évènements embryonnaires de la régulation de RAB3A et SYN1. Mes résultats indiquent que les défauts de ces protéines dans les cerveaux adultes ne sont pas dus à une altération de l'épissage alternatif des transcrits et ne recréent pas des évènements embryonnaires. La neuropathogenèse de la DM1 va, donc, au delà de la dérégulation de l'épissage et d'autres voies moléculaires restent à explorer dans les cerveaux DM1. Afin d'identifier des sous-populations cellulaires susceptibles à l'accumulation des ARN toxiques, nous avons étudié la distribution des foci dans plusieurs régions cérébrales. (...)