Modélisation et apprentissage de relations spatiales pour la reconnaissance et l'interprétation d'images
Modeling and learning spatial relations for image recognition and understanding
par Clément Michaël sous la direction de Wendling Laurent
Thèse de doctorat en Informatique
École doctorale Informatique, Télécommunications et Electronique

Soutenue le Tuesday 26 September 2017 à Sorbonne Paris Cité

Sujets
  • Illustrations, images, etc. -- Interprétation
  • Traitement d'images -- Techniques numériques

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr (Version intégrale de la thèse (pdf))
TEL (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Reconnaissance de formes, Vision par ordinateur, Relations spatiales, Descripteurs de position relative
Resumé
Ces dernières années, la quantité de données visuelles produites par divers types de capteurs est en augmentation permanente. L'interprétation et l'indexation automatique de telles données constituent des défis importants pour les domaines liés à la reconnaissance de formes et la vision par ordinateur. Dans ce contexte, la position relative des différents objets d'intérêt composant les images représente une information particulièrement importante pour interpréter leur contenu. Les relations spatiales sont en effet porteuses d'une sémantique riche, qui est fortement liée à la perception humaine. Les travaux de recherche présentés dans cette thèse proposent ainsi d'explorer différentes approches génériques de description de l'information spatiale, en vue de les intégrer dans des systèmes de reconnaissance et d'interprétation d'images de haut niveau. Tout d'abord, nous présentons une approche pour la description de configurations spatiales complexes, où les objets peuvent être imbriqués les uns dans les autres. Cette notion est formalisée par deux nouvelles relations spatiales, nommées enlacement et entrelacement. Nous proposons un modèle qui permet de décrire et de visualiser ces configurations avec une granularité directionnelle. Ce modèle est validé expérimentalement pour des applications en imagerie biomédicale, en télédétection et en analyse d'images de documents. Ensuite, nous présentons un cadre d'apprentissage de relations spatiales composites à partir d'ensembles d'images. Inspirée des approches par sacs de caractéristiques visuelles, cette stratégie permet de construire des vocabulaires de configurations spatiales apparaissant dans les images, à différentes échelles. Ces caractéristiques structurelles peuvent notamment être combinées avec des descriptions locales, conduisant ainsi à des représentations hybrides et complémentaires. Les résultats expérimentaux obtenus sur différentes bases d'images structurées permettent d'illustrer l'intérêt de cette approche pour la reconnaissance et la classification d'images.