Estimation non-paramétrique adaptative pour des modèles bruités
Nonparametric adaptive estimation in measurement error models
par Mabon Gwennaëlle sous la direction de Comte Fabienne
Thèse de doctorat en Mathématiques appliquées
École doctorale de Sciences Mathématiques de Paris Centre

Soutenue le Thursday 26 May 2016 à Sorbonne Paris Cité

Sujets
  • Convolutions (mathématiques)
  • Mathématiques

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr (Version intégrale de la thèse (pdf))
TEL (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Modèles de convolution, Modèles de durées, Modèles mixtes, Estimation non-paramétrique, Estimation adaptative, Estimation par projection, Sélection de modèles, Méthodes de Goldenshluger et Lepski, Agrégation, Vitesses optimales minimax
Resumé
Dans cette thèse, nous nous intéressons au problème d'estimation de densité dans le modèle de convolution. Ce cadre correspond aux modèles avec erreurs de mesures additives, c'est-à-dire que nous observons une version bruitée de la variable d'intérêt. Pour mener notre étude, nous adoptons le point de vue de l'estimation non-paramétrique adaptative qui repose sur des procédures de sélection de modèle développées par Birgé & Massart ou sur les méthodes de Lepski. Cette thèse se divise en deux parties. La première développe des méthodes spécifiques d'estimation adaptative quand les variables d'intérêt et les erreurs sont des variables aléatoires positives. Ainsi nous proposons des estimateurs adaptatifs de la densité ou encore de la fonction de survie dans ce modèle, puis de fonctionnelles linéaires de la densité cible. Enfin nous suggérons une procédure d'agrégation linéaire. La deuxième partie traite de l'estimation adaptative de densité dans le modèle de convolution lorsque la loi des erreurs est inconnue. Dans ce cadre il est supposé qu'un échantillon préliminaire du bruit est disponible ou que les observations sont disponibles sous forme de données répétées. Les résultats obtenus pour des données répétées dans le modèle de convolution permettent d'élargir cette méthodologie au cadre des modèles linéaires mixtes. Enfin cette méthode est encore appliquée à l'estimation de la densité de somme de variables aléatoires observées avec du bruit.