Voies de signalisation activées lors de la stimulation du récepteur de l'apéline, responsables de l'effet hypotenseur de l'apéline
Signalling pathways activated by apelin receptor stimulation and responsible of the hypotensive effect of apelin.
par Rodrigo ALVEAR-PEREZ sous la direction de Catherine LLORENS-CORTES
Thèse de doctorat en Pharmacologie
ED 563 Médicament, Toxicologie, Chimie, Imageries

Soutenue le mardi 29 janvier 2019 à Sorbonne Paris Cité

Sujets
  • Apeline
  • Artérioles
  • Bêta-arrestines
  • Insuffisance cardiaque
  • Récepteurs
  • Thérapeutique
Le texte intégral n’est pas librement disponible sur le web
Vous pouvez accéder au texte intégral de la thèse en vous authentifiant à l’aide des identifiants ENT d’Université Paris Cité, si vous en êtes membre, ou en demandant un accès extérieur, si vous pouvez justifier de de votre appartenance à un établissement français chargé d’une mission d’enseignement supérieur ou de recherche

Se connecter ou demander un accès au texte intégral

Les thèses de doctorat soutenues à Université Paris Cité sont déposées au format électronique

Consultation de la thèse sur d’autres sites :

Theses.fr

Description en anglais
Description en français
Mots clés
Apéline, Beta-Arrestine, Inhibiteurs d'internalisation, Effet hypotenseur de l'apéline
Resumé
L'apéline est un neuropeptide vasoactif qui joue un rôle crucial dans le maintien de l'équilibre hydrique et des fonctions cardiovasculaires. Des études réalisées au laboratoire sur les effets de l'apéline-17 (K17F) et du fragment d'apéline K16P, correspondant à K17F delétée de la phénylalanine (Phe) à son extrémité C-terminale, ont montré que la présence de cette Phe est nécessaire pour que l'apéline puisse d'une part, induire l'internalisation du récepteur de l'apéline, et d'autre part, provoquer une baisse de la pression artérielle. Par la suite, nous avons identifié dans les cellules CHO, exprimant de façon stable le récepteur murin de l'apéline que l'internalisation du récepteur de l'apéline induite par K17F avait pour conséquence d'induire l'activation d'une seconde voie de signalisation indépendante de la protéine Gi et dépendante de la beta-arrestine, correspondant à la voie des MAP kinases (Mitogen Activator Protein Kinase), qui pourrait être impliquée dans l'effet hypotenseur de l'apéline. Mes travaux ont ensuite consisté à caractériser dans un modèle physiologique, les artérioles afférentes juxtamédullaires de rein de rat (AAJM), si la voie de signalisation médiée par la beta-arrestine était impliquée dans l'effet vasodilatateur de K17F. Sachant que l'AngII induit une vasoconstriction en augmentant la mobilisation de calcium intracellulaire ([Ca2+]i), nous avons montré en mesurant les variations de diamètre artériolaire et de [Ca2+]i, que lorsque la voie Gi est bloquée par la toxine de pertussis (PTX), l'effet vasorelaxant induit par K17F n'est pas modifié. Ces données suggèrent que l'effet vasorelaxant de K17F sur les AAJM précontractées par l'AngII est protéine Gi-indépendant. En présence de PTX et de différents inhibiteurs d'internalisation, l'effet vasorelaxant induit par K17F sur les AAJM pré-contractées par l'AngII est aboli. De plus, en présence de PTX et de ces inhibiteurs, lorsque l'on applique K17F sur la phase plateau de la réponse calcique induite par l'AngII, aucune diminution significative de la mobilisation du [Ca2+]i est observée. Ceci est en accord avec notre hypothèse, à savoir que l'effet vasorelaxant de K17F est protéine Gi-indépendant et beta-arrestine-dépendant. L'ApélineR constitue une cible thérapeutique potentielle dans le traitement de l'insuffisance cardiaque et des rétentions hydriques. Sachant que la demi-vie de l'apéline dans la circulation sanguine est de l'ordre de la minute, un autre volet de mon travail de thèse a été de développer des analogues de K17F métaboliquement stables par deux stratégies différentes. Premièrement, nous avons substitué chacun des résidus de l'apéline par son énantiomère de la série D ou par un acide aminé synthétique. Deuxièmement, nous avons ajouté une chaîne fluoroalkyle à l'extrémité N-terminale de K17F. Ces deux stratégies nous ont permis d'obtenir plusieurs composés dont les plus actifs sont le P92 et le LIT01-196 qui conservent des propriétés pharmacologiques identiques à celles de K17F et qui présentent une demi-vie plasmatique largement supérieure à celle du peptide endogène. Ces deux analogues se sont révélés actifs in vivo avec une capacité à diminuer la pression artérielle et à réduire la sécrétion de vasopressine dans le sang conduisant à une augmentation de la diurèse aqueuse.