Unraveling the neural circuitry of sequence-based navigation using a combined fos imaging and computational approach
Caractérisation des circuits neuronaux sous-tendant la navigation de type séquence : imagerie Fos, connectivité fonctionnelle et approche computationnelle
par Babayan Bénédicte sous la direction de Rondi-Reig Laure
Thèse de doctorat en Neurosciences
École doctorale Interdisciplinaire Européenne Frontières du Vivant

Soutenue le Friday 27 June 2014 à Université Paris Descartes ( Paris 5 )

Sujets
  • Cervelet
  • Hippocampe (anatomie)
  • Intelligence computationnelle
  • Perception spatiale

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Navigation, Apprentissage de séquence, Comportement, Imagerie Fos, Analyse de réseau, Apprentissage computationnel, Apprentissage par renforcement
Resumé
La navigation spatiale est une fonction complexe qui nécessite de combiner des informations sur l'environnement et notre mouvement propre pour construire une représentation du monde et trouver le chemin le plus direct vers notre but. Cette intégration multimodale suggère qu'un large réseau de structures corticales et sous-corticales interagit avec l'hippocampe, structure clé de la navigation. Je me suis concentrée chez la souris sur la navigation de type séquence (ou stratégie égocentrique séquentielle) qui repose sur l'organisation temporelle de mouvements associés à des points de choix spatialement distincts. Après avoir montré que l'apprentissage de cette navigation de type séquence nécessitait l'hippocampe et le striatum dorso-médian, nous avons caractérisé le réseau fonctionnel la sous-tendant en combinant de l'imagerie Fos, de l'analyse de connectivité fonctionnelle et une approche computationnelle. Les réseaux fonctionnels changent au cours de l'apprentissage. Lors de la phase précoce, le réseau impliqué comprend un ensemble de régions cortico-striatales fortement corrélées. L'hippocampe était activé ainsi que des structures impliquées dans le traitement d'informations de mouvement propre (cervelet), dans la manipulation de représentations mentales de l'espace (cortex rétrosplénial, pariétal, entorhinal) et dans la planification de trajectoires dirigées vers un but (boucle cortex préfrontal-ganglions de la base). Le réseau de la phase tardive est caractérisé par l'apparition d'activations coordonnées de l'hippocampe et du cervelet avec le reste du réseau. Parallèlement, nous avons testé si l'intégration de chemin, de l'apprentissage par renforcement basé modèle ou non-basé modèle pouvaient reproduire le comportement des souris. Seul un apprentissage par renforcement non-basé modèle auquel une mémoire rétrospective était ajoutée pouvait reproduire les dynamiques d'apprentissage à l'échelle du groupe ainsi que la variabilité individuelle. Ces résultats suggèrent qu'un modèle d'apprentissage par renforcement suffit à l'apprentissage de la navigation de type séquence et que l'ensemble des structures que cet apprentissage requiert adaptent leurs interactions fonctionnelles au cours de l'apprentissage.