Mots clés |
Nanoparticules magnétiques d'oxyde de fer, Agrégats multicellulaires, Tension de surface des tissus, Rhéologie des tissus, Loi puissance, Homéostasie du fer |
Resumé |
Les nanoparticules d'oxyde de fer ont récemment été envisagées comme outils pour l'ingénierie tissulaire. Elles sont internalisées par les cellules qui deviennent alors magnétiques. Des forces magnétiques peuvent ainsi être appliquées à distance sur ces cellules pour contrôler leur organisation spatiale et temporelle, et former un tissu. Ces applications posent la question du devenir des nanoparticules, qui conditionne in fine leur utilisation clinique. Ce travail s'inscrit dans ce cadre et comporte deux axes.La première partie traite de l'étude des propriétés mécaniques et rhéologiques de tissus biologiques modèles, les agrégats multicellulaires. Une combinaison de méthodes magnétiques est proposée pour fabriquer et stimuler des tissus magnétiques de taille et de forme contrôlées. Ces agrégats magnétiques sont soumis à distance à des contraintes magnétiques d'écrasement. L'étude de leur déformation permet d'explorer des caractéristiques statiques et dynamiques rarement étudiées à l'échelle tissulaire (tension de surface, loi puissance, non linéarité). La deuxième partie se concentre sur l'évolution à moyen terme des nanoparticules dans leur environnement tissulaire, au cœur des agrégats. En combinant ce tissu modèle avec des méthodes de quantification magnétique, nous avons pu mettre en évidence une dégradation massive d'origine endosomale, sans pour autant impacter de manière importante l'homéostasie du fer. De plus, le modèle tissulaire mis en place permet d'étudier la biodégradation intracellulaire de n'importe quel type de nanoparticules. Nous l'avons testé avec des nano-architectures plus complexes: nanocubes, nanodimers, ou nanoparticules magnéto-plasmoniques |