Génération de modèles numériques de surface et détection de changements 3D à partir d'imagerie satellite stéréoscopique très haute résolution
Digital surface model generation and 3D change detection from high resolution satellite stereoscopic imagery
par Guérin Cyrielle sous la direction de Pierrot-Deseilligny Marc
Thèse de doctorat en Informatique
École doctorale Informatique, Télécommunications et Electronique

Soutenue le Tuesday 18 February 2014 à Université Paris Descartes ( Paris 5 )

Sujets
  • Imagerie satellitaire
  • Programmation dynamique

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

TEL (Version intégrale de la thèse (pdf))
Theses.fr (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
MNS, Imagerie satellite stéréoscopique, Détection de changements, Programmation dynamique, Labellisation semi-globale
Resumé
L'imagerie satellite permet aujourd'hui l'acquisition d'un nombre croissant de données dont l'augmentation des résolutions spatiale et temporelle permet de caractériser de plus en plus finement une scène et son évolution. Dans ce contexte, les méthodes de détection des changements apparus entre deux scènes sont particulièrement étudiées. Elles sont généralement basées sur les différences radiométriques entre les images. Cependant, ces méthodes s'avèrent souvent peu robustes à des changements radiométriques non pertinents tels que ceux induits par la variation des conditions d'acquisition des images. L'objectif de cette thèse est ainsi de développer une méthode alternative, basée sur la recherche des changements d'élévation de la scène. L'élévation représente en effet une information pertinente et adaptée, notamment dans un contexte de détection des changements de type urbain (construction, destruction ou modification d'infrastructures). Pour répondre à des besoins en analyse d'image qui nécessitent des résultats rapides et fiables, la méthode que nous proposons est une chaîne de traitements complète et automatique basée sur l'exploitation de couples d'image satellites stéréoscopiques très haute résolution permettant la génération et la comparaison de Modèles Numériques de Surface (MNS). Afin de limiter les fausses alarmes de changements dues aux erreurs liées à la génération des MNS, une étape clé de cette thèse a consisté à augmenter la précision des MNS, notamment à travers la prise en compte des zones d'occlusions et de mauvaise corrélation. La méthode de génération des MNS à ainsi été améliorée et une technique innovante de fusion des deux MNS provenant du même couple d'images a été développée. La comparaison des MNS générés avec un MNS LiDAR montre que notre approche permet une nette augmentation de la qualité des MNS, les erreurs de corrélation sont réduites tandis que les zones d'occlusion sont précisément localisées.La méthode de détection des changements d'élévation est, quant à elle, basée sur une labellisation par optimisation des pixels du MNS différentiel calculé à partir des MNS produits à chaque date. Cette étape permet de mettre en évidence les vrais changements de la scène parmi le bruit résiduel des MNS. Les résultats obtenus sur différents sites testés montrent que plus de 80% des changements de taille supérieure à 15 pixels x 15 pixels (ou 100 m² avec des images très haute résolution) sont détectés par notre méthode, avec moins de 20% d'erreurs. Nous montrons cependant que ces résultats dépendent principalement du paramètre de régularisation de la détection des changements, qui contrôle le taux de fausses alarmes par rapport au taux de bonnes détections du résultat.