Modélisation physique de l'organisation et de la dynamique de organites intracellulaires
Physical modeling of the organization and dynamics of intracellular organelles
par Jean-Patrick VREL sous la direction de Pierre SENS
Thèse de doctorat en Biophysique
ED 474 Frontières de l'Innovation en Recherche et Education

Soutenue le mardi 17 septembre 2019 à Université Paris Cité

Sujets
  • Organites

Les thèses de doctorat soutenues à Université Paris Cité sont déposées au format électronique

Consultation de la thèse sur d’autres sites :

TEL (Version intégrale de la thèse (pdf))
Theses.fr (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Biophysique, Réductionniste, Organites, Auto-organisation, Stochastiques, Modélisation physique, Golgi, Hors équilibre, Transport vésiculaire
Resumé
Les cellules eukaryotes sont compartimentées par des structures intracellulaires nommées organites. On peut citer le réticulum endoplasmique, l'appareil de Golgi, le réseau endosomal et lyzosomal. Ces structures délimitées par des membranes cellulaires sont hautement dynamiques, structures dont les composants s'échangent sans cesse entre les différents compartiments. Malgré cette dynamique, les structures qui composent les réseaux d'organites sont très stables et robustes, de sorte que l'on peut décrire un état stationnaire pour ces systèmes hors équilibre et auto-organisés. Bien qu'ils soient robustes en conditions physiologiques, ces compartiments peuvent subir des modification de structures en condition pathologiques ou sous l'effet de traitements pharmacologiques. L'auto-organisation de systèmes à l'équilibre et relativement bien compris par le biais de diagrammes de phases, où l'on peut représenter lesdites phases en fonctions de paramètres physiques, tels que la concentration, ou les interaction entre les différents composants. La situation est bien moins prédictible pour des systèmes hors équilibre. C'est là donc une question scientifique intéressante que de comprendre les mécanismes contraignant l'organisation intracellulaire, où transports actifs et modification biochimiques des composant, tout deux consommant de l'énergie, sont en compétition avec des phénomènes passifs telle que la diffusion. Nous étudions, aussi bien numériquement qu'analytiquement, des modèles d'auto-organisation et de transport, dans des systèmes où un nombre réduit de composants s'organisent par le biais de réaction stochastiques, en des structures de grandes tailles. La question principale que nous posons est de comprendre comment les dynamiques d'échanges entre compartiments (par le biais de vésiculations et de fusion) jouent de concert avec les cinétiques de maturation des composants d'organites, permettent la mise en place d'un réseau robuste. A cette fin, nous nous focalisons sur un organite type, multi-compartiments, doté d'une dynamique riche de transport et de maturation de ses composants : l'appareil de Golgi. Nous décrivons et analysons l'état stationnaire de ces systèmes, en des termes de tailles et de pureté des compartiments le composant - sont ils gros ou petit, triés dans leur composition ou mixés. De cet état stationnaire émerge spontanément un transport de vésicules entre les compartiments, dont la directionnalité est intimement liée à l'état stationnaire. Ce transport est antérograde dans les régimes triés, rétrograde dans les régimes mixés. Des interactions locales, entre les compartiments et ce qu'ils renferment (protéines dont le nom générique est cargo), suffisent à biaiser ces dynamiques de transport. Cela impacte à la fois le temps de résidence des cargos, mais aussi leur localisation dans le système. La capacité de cet organite à trier ces cargos dépend cependant grandement de l'état stationnaire précédemment décrit.