Prédiction par Deep Learning de la réponse complète après radiochimiothérapie pré-opératoire du cancer du rectum localement avancé
Deep learning to predict pathologic complete response to neoadjuvant chemoradiation in locally-advanced rectal cancer
par Jean-Emmanuel BIBAULT sous la direction de Anita BURGUN et de Philippe GIRAUD
Thèse de doctorat en Informatique biomédicale
ED 393 Pierre Louis de Santé Publique : Epidémiologie et Sciences de l'Information Biomédicale

Soutenue le Friday 21 September 2018 à Sorbonne Paris Cité

Sujets
  • Apprentissage automatique
  • Cancer
  • Radiochimiothérapie
  • Rectum
Le texte intégral n’est pas librement disponible sur le web
Vous pouvez accéder au texte intégral de la thèse en vous authentifiant à l’aide des identifiants ENT de l’Université, au sein de l’établissement en utilisant un compte invité Wifi ou en demandant un accès extérieur si vous pouvez justifier de votre appartenance à un établissement chargé d’une mission d’enseignement supérieur ou de recherche

Se connecter ou demander un accès au texte intégral

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr (Version partielle de la thèse pour sa diffusion sur Internet (pdf))
TEL (Version partielle de la thèse pour sa diffusion sur Internet (pdf))

Description en anglais
Description en français
Mots clés
Oncologie, Radiothérapie, Prédiction, Deep learning
Resumé
L'utilisation de systèmes informatiques pour formaliser, organiser et planifier le traitement des patients a abouti à la création et à l'accumulation de quantité importante de données. Ces informations comprennent des caractéristiques démographiques, socio-économiques, cliniques, biologiques, d'imagerie, et, de plus en plus, génomiques. La médecine et sa pratique, fondées sur la sémiologie et la physiopathologie, vont être profondément transformées par ce phénomène. La complexité et la quantité des informations à intégrer pour prendre une décision médicale pourrait dépasser rapidement les capacités humaines. Les techniques d'intelligence artificielle pourraient assister le médecin et augmenter ses capacités prédictives et décisionnelles. La première partie de ce travail présente les types de données désormais accessibles en routine en oncologie radiothérapie. Elle détaille les données nécessaires à la création d'un modèle prédictif. Nous explorons comment exploiter les données spécifiques à la radiothérapie et présentons le travail d'homogénéisation et de conceptualisation qui a été réalisé sur ces données, notamment via la création d'une ontologie, dans le but de les intégrer à un entrepôt de données. La deuxième partie explore différentes méthodes de machine learning : k-NN, SVM, ANN et sa variante, le Deep Learning. Leurs avantages et inconvénients respectifs sont évalués avant de présenter les études ayant déjà utilisé ces méthodes dans le cadre de la radiothérapie. La troisième partie présente la création d'un modèle prédictif de la réponse complète à la radiochimiothérapie (RTCT) pré-opératoire dans le cancer du rectum localement avancé. Cette preuve de concept utilise des sources de données hétérogènes et un réseau neuronal profond dans le but d'identifier les patients en réponse complète après RTCT qui pourraient ne pas nécessiter de traitement chirurgical radical. Cet exemple, qui pourrait en pratique être intégré aux logiciels de radiothérapie déjà existant, utilise les données collectées en routine et illustre parfaitement le potentiel des approches de prédiction par IA pour la personnalisation des soins.