Optogénétique bi-photonique
Two-photon optogenetics
par Bègue (Begue) Aurélien sous la direction de Emiliani Valentina
Thèse de doctorat en Neurosciences
École doctorale Cerveau, Cognition, Comportement

Soutenue le Wednesday 21 November 2012 à Université Paris Descartes ( Paris 5 )

Sujets
  • Optique non linéaire
  • Optogénétique
  • Photonique
Le texte intégral n’est pas librement disponible sur le web
Vous pouvez accéder au texte intégral de la thèse en vous authentifiant à l’aide des identifiants ENT de l’Université, au sein de l’établissement en utilisant un compte invité Wifi ou en demandant un accès extérieur si vous pouvez justifier de votre appartenance à un établissement chargé d’une mission d’enseignement supérieur ou de recherche

Se connecter ou demander un accès au texte intégral

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr

Description en anglais
Description en français
Mots clés
Optique non linéaire,Optogénétique,Modulation de front d'onde
Resumé
En complément aux méthodes traditionnelles d'observation et de stimulation en neuroscience, l'optogénétique, combinant l'expression ciblée de protéines photosensibles dans les neurones et l'utilisation de nouvelles techniques de microscopies, a connu un essor important ces dernières années. Ce nouveau procédé permet d'enregistrer de manière non invasive les signaux fonctionnels de circuits intacts tels que les changements de potentiel de membrane ou de concentration intracellulaire de calcium mais également de moduler l'excitabilité des neurones. Pour illuminer ces protéines photosensibles, de nouvelles méthodes de microscopie ont été développées. En particulier, afin d'obtenir une résolution spatiale optimale au sein d'un tissu biologique, il devient nécessaire d'utiliser l'illumination bi-photonique et d'utiliser des techniques permettant la mise en forme du faisceau lumineux pour s'adapter à la morphologie des circuits ou même des neurones étudiés.Au cours de ma thèse, j'ai développé une combinaison de méthodes optiques (associant le contraste de phase généralisé avec la focalisation temporelle) afin d'activer le canal cationique channelrhodopsin-2 en excitation bi-photonique. Ce travail a démontré, pour la première fois, l'activation simultanée de potentiels d'action dans plusieurs cellules tout en conservant une résolution axiale à l'échelle cellulaire (~10 μm).La mise en forme du faisceau lumineux semble très avantageuse pour améliorer la spécificité de l'activation. Il restait à démontrer que les faisceaux ainsi modulés conservaient leur intégrité spatiale en se propageant à l'intérieur de tissus biologiques diffusants. J'ai donc étudié la propagation de faisceaux lasers modulés par les techniques du contraste de phase généralisé et de l'holographie numérique en combinaison avec la focalisation temporelle. L'utilisation de la focalisation temporelle permet aux volumes d'excitation de rester confinés sur l'axe de propagation comme observé précédemment, mais aussi de reconstruire un profil d'excitation en profondeur dans le tissu, qui correspond au profile généré sans milieu diffusant. Cet effet est plus important pour le contraste de phase généralisé que pour l'holographie numérique et se dégrade en fonction de la profondeur à laquelle l'activation a lieu. J'ai démontré pour la première fois, l'activation en profondeur (> 200 μm) de neurones grâces à ces méthodes.Enfin, j'ai testé les mêmes techniques d'illumination sur d'autres protéines photosensibles, telles que la C1V1 et l'halorhodopsin. Après avoir établi les spectres d'activation afin de trouver la longueur d'onde optimale pour l'activation bi-photonique, j'ai exprimé ces protéines dans des tranches de cerveaux. Les deux protéines requièrent une activation à 1040 nm à la limite du laser Ti:Sapphire utilisé dans de nombreux laboratoires biologiques. La C1V1 a généré des courants similaires à la ChR2 en terme d'amplitude tout en conservant la lente cinétique de fermeture caractéristique de ce canal. L'halorhodopsin, quant à elle, reste difficile à activer avec de faibles courants et ne permet pas une inhibition sélective de trains de potentiels d'action. Ce problème est probablement dû à un faible taux d'expression observé dans les neurones étudiés et serait peut-être résolu en changeant de construction virale.