Nonlinear encoding of sounds in the auditory cortex
Encodage non linéaire des sons par le système auditif
par Alexandre KEMPF sous la direction de Brice BATHELLIER
Thèse de doctorat en Neurosciences
ED 474 Frontières de l'Innovation en Recherche et Education

Soutenue le Wednesday 17 October 2018 à Sorbonne Paris Cité

Sujets
  • Aire auditive
  • Perception auditive

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr (Version intégrale de la thèse (pdf))
TEL (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Neurosciences, Système auditif, Audition, Microscopie, Imagerie calcique, Non linearité
Resumé
Les objets perceptuels sont les unités élémentaires utilisées par le cerveau pour construire une représentation interne du monde a partir de signaux physiques, comme la lumière ou les ondes sonores. Alors que ces signaux sont d'abord traduit, par les récepteurs dans les organes périphériques, en signaux neuronaux, l'émergence d'objets perceptuels nécessite un traitement intensif dans le système nerveux central qui n'est pas encore entièrement connu. Il est intéressant de noter que les progrès récents de deep learning montrent qu'une séries d'opérations non linéaires et linéaires est très efficace pour catégoriser les objets perceptuels visuels et auditifs de la même manière que les humains. En revanche, la plupart des connaissances actuelles sur le système auditif se concentrent sur les transformations linéaires. Afin de comprendre la contribution des non-linéarités du système auditif à la perception, nous avons étudié l'encodage des sons avec une intensité croissante et une intensité décroissante dans le cortex auditif de la souris. Ces deux sons sont perçus avec une importance inégale malgré le fait qu'ils ont la même énergie physique et le même contenu spectral, un phénomène incompatible avec le traitement linéaire. En enregistrant l'activité de grandes populations corticales pour les sons montants et descendants, nous avons constaté que le cortex les encode avec des populations distinctes qui détectent des caractéristiques non linéaires, ce qui explique l'asymétrie perceptuelle. Nous avons également montré que, dans les modèles de reinforcement learning, la quantité d'activité neuronale déclenchée par un son impacte la vitesse et la stratégie d'apprentissage. Des effets très similaires ont été observés dans plusieurs taches de discrimination ou les sons provoquaient des réponses neuronales de différentes intensités. Ceci établit que les non-linéarités du système auditif ont un impact sur la perception et le comportement. Pour mieux identifier les non-linéarités qui influencent le codage des sons, nous avons ensuite enregistré l'activité d'environ 60 000 neurones échantillonnant toute la superficie du cortex auditif. Au-delà de l'organisation tonotopique à fine échelle découverte avec cet ensemble de données, nous avons identifié et quantifié 7 non-linéarités. Il est aussi intéressant de constater que différentes non-linéarités peuvent interagir entre elles d'une manière non triviale. La connaissance de ces interactions est importante pour affiner le modèle de traitement auditif. Enfin, nous nous sommes demandé si les processus non linéaires sont également importants pour l'intégration multisensorielle. Nous avons mesuré, par imagerie calcique, comment les images et les sons se combinent dans le cortex visuel et auditif. Nous n'avons trouvé aucune modulation du cortex auditif (L2/3) en réponse à des stimuli visuels. Nous avons observé que les entrées du cortex auditif dans le cortex visuel affectent les réponses visuelles concomitantes à un son. Nous avons constaté que les projections du cortex auditif au cortex visuel encode de préférence une caractéristique non linéaire particulière : l'apparition soudaine de sons fort. Par conséquent, l'activité du cortex visuel pour une image et un son fort est plus élevée que pour l'image seule ou combinée à un son faible. Ce résultat suggère que les sons forts sont pertinents du point de vue de comportement multisensoriel, peut-être pour indiquer la présence de nouveaux objets dans le champ visuel, ce qui pourrait représenter des menaces potentielles. En conclusion, nos résultats montrent que les non-linéarités sont omniprésentes dans le traitement du son par le cerveau et jouent également un rôle dans l'intégration de l'information auditive avec l'information visuelle. Il est non seulement crucial de tenir compte de ces non-linéarités pour comprendre comment se forment les représentations perceptuelles, mais aussi pour prédire l'impact de ces représentations sur le comportement.