Von Mises-Fisher based (co-)clustering for high-dimensional sparse data : application to text and collaborative filtering data
Modèles de mélange de von Mises-Fisher pour la classification simple et croisée de données éparses de grande dimension
par Salah Aghiles sous la direction de Nadif Mohamed
Thèse de doctorat en Science de données
École doctorale Informatique, Télécommunications et Electronique

Soutenue le Monday 21 November 2016 à Sorbonne Paris Cité

Sujets
  • Classification
  • Classification automatique
  • Données massives

Depuis le 1er janvier 2012, les thèses de doctorat soutenues ou préparées à l’Université Paris Descartes sont déposées au format électronique, sous licence Creative Commons.

Consultation de la thèse sur d’autres sites :

Theses.fr (Version intégrale de la thèse (pdf))
TEL (Version intégrale de la thèse (pdf))

Description en anglais
Description en français
Mots clés
Apprentissage statistique, Classification, Classification croisée, Modèles de mélanges, Statistiques directionnelles, Distribution de von Mises-Fisher, Fouille de textes, Systèmes de recommandation, Filtrage collaboratif, Matrices creuses, Grande dimension
Resumé
La classification automatique, qui consiste à regrouper des objets similaires au sein de groupes, également appelés classes ou clusters, est sans aucun doute l'une des méthodes d'apprentissage non-supervisé les plus utiles dans le contexte du Big Data. En effet, avec l'expansion des volumes de données disponibles, notamment sur le web, la classification ne cesse de gagner en importance dans le domaine de la science des données pour la réalisation de différentes tâches, telles que le résumé automatique, la réduction de dimension, la visualisation, la détection d'anomalies, l'accélération des moteurs de recherche, l'organisation d'énormes ensembles de données, etc. De nombreuses méthodes de classification ont été développées à ce jour, ces dernières sont cependant fortement mises en difficulté par les caractéristiques complexes des ensembles de données que l'on rencontre dans certains domaines d'actualité tel que le Filtrage Collaboratif (FC) et de la fouille de textes. Ces données, souvent représentées sous forme de matrices, sont de très grande dimension (des milliers de variables) et extrêmement creuses (ou sparses, avec plus de 95% de zéros). En plus d'être de grande dimension et sparse, les données rencontrées dans les domaines mentionnés ci-dessus sont également de nature directionnelles. En effet, plusieurs études antérieures ont démontré empiriquement que les mesures directionnelles, telle que la similarité cosinus, sont supérieurs à d'autres mesures, telle que la distance Euclidiennes, pour la classification des documents textuels ou pour mesurer les similitudes entre les utilisateurs/items dans le FC. Cela suggère que, dans un tel contexte, c'est la direction d'un vecteur de données (e.g., représentant un document texte) qui est pertinente, et non pas sa longueur. Il est intéressant de noter que la similarité cosinus est exactement le produit scalaire entre des vecteurs unitaires (de norme 1). Ainsi, d'un point de vue probabiliste l'utilisation de la similarité cosinus revient à supposer que les données sont directionnelles et réparties sur la surface d'une hypersphère unité. En dépit des nombreuses preuves empiriques suggérant que certains ensembles de données sparses et de grande dimension sont mieux modélisés sur une hypersphère unité, la plupart des modèles existants dans le contexte de la fouille de textes et du FC s'appuient sur des hypothèses populaires : distributions Gaussiennes ou Multinomiales, qui sont malheureusement inadéquates pour des données directionnelles. Dans cette thèse, nous nous focalisons sur deux challenges d'actualité, à savoir la classification des documents textuels et la recommandation d'items, qui ne cesse d'attirer l'attention dans les domaines de la fouille de textes et celui du filtrage collaborative, respectivement. Afin de répondre aux limitations ci-dessus, nous proposons une série de nouveaux modèles et algorithmes qui s'appuient sur la distribution de von Mises-Fisher (vMF) qui est plus appropriée aux données directionnelles distribuées sur une hypersphère unité.